A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory

نویسندگان

  • G. R. Liu
  • G. R. LIU
چکیده

This paper introduces a G space theory and a weakened weak form (W2) using the generalized gradient smoothing technique for a unified formulation of a wide class of compatible and incompatible methods. The W2 formulation works for both finite element method settings and mesh-free settings, and W2 models can have special properties including softened behavior, upper bounds and ultra accuracy. Part I of this paper focuses on the theory and fundamentals for W2 formulations. A normed G space is first defined to include both continuous and discontinuous functions allowing the use of much more types of methods/techniques to create shape functions for numerical models. Important properties and a set of useful inequalities for G spaces are then proven in the theory and analyzed in detail. These properties ensure that a numerical method developed based on the W2 formulation will be spatially stable and convergent to the exact solutions, as long as the physical problem is well posed. The theory is applicable to any problems to which the standard weak formulation is applicable, and can offer numerical solutions with special properties including ‘close-to-exact’ stiffness, upper bounds and ultra accuracy. Copyright 2009 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Plane Waves for Mode-I Crack Problem in Generalized Thermoelasticity

A general model of the equations of generalized thermoelasticity   for an infinite space weakened by a finite linear opening Mode-I crack is solving. The material is   homogeneous and has isotropic properties of elastic half space. The crack is subjected to prescribed temperature and stress distribution. The formulation is applied to generalized thermoelasticity theories, the Lord-Şhulman...

متن کامل

Two common fixed Point theorems for compatible mappings

Recently, Zhang and Song [Q. Zhang, Y. Song, Fixed point theory forgeneralized $varphi$-weak contractions,Appl. Math. Lett. 22(2009) 75-78] proved a common fixed point theorem for two mapssatisfying generalized $varphi$-weak contractions. In this paper, we prove a common fixed point theorem fora family of compatible maps. In fact, a new generalization of Zhangand Song's theorem is given.

متن کامل

SEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS

Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a...

متن کامل

A Normed G Space and Weakened Weak (w) Formulation of a Cell-based Smoothed Point Interpolation Method

This paper presents a normed G1 space and a weakened weak (W2) formulation of a cellbased smoothed point interpolation method (CS-PIM) for 2D solid mechanics problems using three-node triangular cells. Displacement fields in the CS-PIM are constructed using the point interpolation method (polynomial PIM or radial PIM) and hence the shape functions possess the Kronecker delta property facilitati...

متن کامل

Strong convergence results for fixed points of nearly weak uniformly L-Lipschitzian mappings of I-Dominated mappings

In this paper, we prove strong convergence results for a modified Mann iterative process for a new class of I- nearly weak uniformly L-Lipschitzian mappings in a real Banach space. The class of I-nearly weak uniformly L-Lipschitzian mappings is an interesting generalization of the class of nearly weak uniformly L-Lipschitzian mappings which inturn is a generalization of the class of nearly unif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010